293 research outputs found

    A wireless multi-sensor subglacial probe: design and preliminary results

    No full text
    This paper introduces a new way to investigate in situ processes, the wireless multi-sensor probe, as part of an environmental sensor network. Instruments are housed within a 'probe' which can move freely and so behave like a clast. These were deployed in the ice and till at Briksdalsbreen, Norway. The sensors measure temperature, resistivity, case stress, tilt angle and water pressure and send their data to a base station on the glacier surface via radio links. These data are then forwarded by radio to a reference station with mains power 2.5 km away, from where they are sent to a web server in the UK. The system deployed during 2004/05 was very successful and a total of 859 probe days worth of data from the ice and till were collected, along with GPS, weather and diagnostic data about the system

    Ancient pre-glacial erosion surfaces preserved beneath the West Antarctic Ice Sheet

    Get PDF
    Open access journalpresent ice-penetrating radar evidence for ancient (pre-glacial) and extensive erosion surfaces preserved beneath the upstream Institute and Möller ice streams, West Antarctica. Radar data reveal a smooth, laterally continuous, gently sloping topographic block, comprising two surfaces separated by a distinct break in slope. The erosion surfaces are preserved in this location due to the collective action of the Pirrit and Martin–Nash hills on ice sheet flow, resulting in a region of slow flowing, cold-based ice downstream of these major topographic barriers. Our analysis reveals that smooth, flat subglacial topography does not always correspond to regions of either present or former fast ice flow, as has previously been assumed. We discuss the potential origins of the erosion surfaces. Erosion rates across the surfaces are currently low, precluding formation via present-day glacial erosion. We suggest that fluvial or marine processes are most likely to have resulted in the formation of these surfaces, but we acknowledge that distinguishing between these processes with certainty requires further data.Natural Environment Research Council (NERC

    Ice-flow structure and ice dynamic changes in the Weddell Sea sector of West Antarctica from radar-imaged internal layering

    Get PDF
    Recent studies have aroused concerns over the potential for ice draining the Weddell Sea sector of West Antarctica to figure more prominently in sea level contributions should buttressing from the Filchner-Ronne Ice Shelf diminish. To improve understanding of how ice stream dynamics there evolved through the Holocene, we interrogate radio echo sounding (RES) data from across the catchments of Institute and Möller Ice Streams (IIS and MIS), focusing especially on the use of internal layering to investigate ice-flow change. As an important component of this work, we investigate the influence that the orientation of the RES acquisition track with respect to ice flow exerts on internal layering and find that this influence is minimal unless a RES flight track parallels ice flow. We also investigate potential changes to internal layering characteristics with depth to search for important temporal transitions in ice-flow regime. Our findings suggest that ice in northern IIS, draining the Ellsworth Subglacial Highlands, has retained its present ice-flow configuration throughout the Holocene. This contrasts with less topographically constrained ice in southern IIS and much of MIS, whose internal layering evinces spatial changes to the configuration of ice flow over the past ∼10,000 years. Our findings confirm Siegert et al.'s (2013) inference that fast flow was diverted from Bungenstock Ice Rise during the Late Holocene and suggest that this may have represented just one component of wider regional changes to ice flow occurring across the IIS and MIS catchments as the West Antarctic Ice Sheet has thinned since the Last Glacial Maximum.NERC Antarctic Funding Initiativ

    Fruit softening: revisiting the role of pectin

    Get PDF
    Fruit softening is a major determinant of shelf life and commercial value. Here, we highlight recent work that revisits the role of pectin in fruit softening and primary cell wall structure. These studies demonstrate the importance of pectin and the link between its degradation and softening in fleshy fruits. Fruit softening, which is a major determinant of shelf life and commercial value, is the consequence of multiple cellular processes, including extensive remodeling of cell wall structure. Recently, it has been shown that pectate lyase (PL), an enzyme that degrades de-esterified pectin in the primary wall, is a major contributing factor to tomato fruit softening. Studies of pectin structure, distribution, and dynamics have indicated that pectins are more tightly integrated with cellulose microfibrils than previously thought and have novel structural features, including branches of the main polymer backbone. Moreover, recent studies of the significance of pectinases, such as PL and polygalacturonase, are consistent with a causal relationship between pectin degradation and a major effect on fruit softening

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Examining protective effects of SARS-CoV-2 neutralizing antibodies after vaccination or monoclonal antibody administration

    Get PDF
    While new vaccines for SARS-CoV-2 are authorized based on neutralizing antibody (nAb) titer against emerging variants of concern, an analogous pathway does not exist for preventative monoclonal antibodies. In this work, nAb titers were assessed as correlates of protection against COVID-19 in the casirivimab + imdevimab monoclonal antibody (mAb) prevention trial (ClinicalTrials.gov #NCT4452318) and in the mRNA-1273 vaccine trial (ClinicalTrials.gov #NCT04470427). In the mAb trial, protective efficacy of 92% (95% confidence interval (CI): 84%, 98%) is associated with a nAb titer of 1000 IU50/ml, with lower efficacy at lower nAb titers. In the vaccine trial, protective efficacies of 93% [95% CI: 91%, 95%] and 97% (95% CI: 95%, 98%) are associated with nAb titers of 100 and 1000 IU50/ml, respectively. These data quantitate a nAb titer correlate of protection for mAbs benchmarked alongside vaccine induced nAb titers and support nAb titer as a surrogate endpoint for authorizing new mAbs
    • …
    corecore